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The buckling of thin viscous jets 

By J. BUCKMASTER 
Department of Engineering and Applied Science, Yale University, 

New Haven, Connecticut 

(Received 8 September 1972 and in revised form 9 April 1973) 

Thin viscous jets are considered as they slowly fall, in a state of near-neutral 
buoyancy, through a liquid. An equation is derived which describes the path 
of the jet. A small perturbation analysis of nearly vertical jets is carried out, and 
shows that they are necessarily unstable and will eventually deviate significantly 
from the vertical. Numerical integration of the nonlinear equation describes 
the nature of this deviation. These results model some experimental observations 
made by Taylor (1969). 

1. Introduction 
It is a common observation that thin jets of syrup, falling onto a horizontal 

surface, become unstable a short distance above the surface, typically spiralling 
in a fairly regular fashion. Taylor (1969) has suggested that this phenomenon is 
analogous to Euler buckling, observing that the instability is seen as soon as the 
jet starts to slow down (thicken), at which point that part of the axial stress 
associated explicitly with the velocity gradients changes from one of tension to 
one of compression. An equally striking instability was observed by Taylor for 
thin jets of glycerine falling through brine solutions of density comparable with 
that of the jets (i.e. the jets were close to neutral buoyancy). The instability, 
in this case, often manifested itself some distance from the bottom of the contain- 
ing vessel, and in several cases was so violent that the jet reversed its direction, 
meandering upwards a considerable distance before continuing its net downward 
motion. Although in this case it is difficult to perceive any significant variation 
in jet thickness from Taylor’s photographs, he suggests that the mechanism 
is the same as that which causes spiralling in the more familim situation. 

One of the most interesting of Taylor’s photographs of glycerine in brine 
shows an apparent instability developing in the form of an oscillation (in space) 
of, initially, increasing amplitude. But instead of becoming catastrophic, and 
causing excessive deviations from the vertical, the oscillation dies out and the 
jet ultimately continues downwards in a straight line. 

The suggestion by Taylor that these phenomena may be identified with Euler 
buckling is an interesting one, but perhaps it raises more questions than it 
answers. It is certainly true that there are analogies between the equations of 
elasticity and those of inertialess viscous flows. But consideration of the complete 
specification of a physical problem, including the kinematics, boundary con- 
ditions, etc., shows that the differences are as compelling, more often than not, 

29 P L M  61 



450 J .  Buckmaster 

Effective weight 
=O(W--P,))  

FIGURE 1. Jet supported by shear. 

as the similarities. As an example we may anticipate one of the conclusions of the 
subsequent analysis: for an elastica, the bending moment (which plays a funda- 
mental role in equilibrium) is proportional to the curvature; for a viscous jet, on 
the other hand, the bending moment depends on the rate of change of curvature. 

The purpose of the present paper is to achieve some understanding of the 
glycerine-in-brine instability by consideration of a simple, rational, mathe- 
matical model. We can feel confident that such a model contains the right in- 
gredients if it duplicates all the qualitative features of the experiment, without 
exhibiting any extraneous ones. In this regard, we are not completely successful. 
The central result is a fifth-order nonlinear differential equation which describes 
the location of the jet centre-line. The solutions of this equation are unstable, in 
the sense that a small disturbance applied to a vertical jet will eventually cause 
significant deviations from the vertical. Moreover, numerical integration of the 
equation shows that it is capable of describing meandering to a certain extent. 
Both of these features are revealed by Taylor’s experiments. However, there is 
evidence that the mathematical jets will eventually spiral towards some fixed 
point rather than fallindefinitely, on average; and no stable solutions are obtained, 
thus leaving Taylor’s single stable jet unexplained. Thus the present work 
should only be regarded as an exploratory first attempt at the problem, and in 
the conclusion suggestions are offered as to what improvements may be possible. 

The fundamental assumption that we adopt, in order to make the analysis 
tractable, is that the jet is thin compared with a length scale on which significant 
flow changes occur. Furthermore, only two-dimensional jets are considered, in 
the belief that they should be capable of modelling three-dimensional jets that 
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FIGURE 2. Co-ordinate system. 

move in a single plane. Now in a jet of thickness 0(6), 6 4 1, it turns out that the 
shear stress is O(62). This alone must be capable of supporting the effective weight 
of a unit length of jet if the model is to be capable of describing the gross meander- 
ings apparent in Taylor’s photographs (figure 1). From this it follows that the 
difference between the density of the jet and that of the surrounding fluid must 
be 0($2). This quantifies the assumption that the jet is close to neutral buoyancy. 

The Reynolds number is assumed to be small, but it is of interest to incor- 
porate inertial effects in a non-trivial manner, and this can be achieved by assum- 
ing that the Reynolds number i s  O(S2). 

In  that part of the discussion that is strictly rational, the drag imparted by 
the bath liquid (brine, in the experiments) is ignored. Then the only effect of the 
bath is to apply a hydrostatic pressure to the jet. However, it is of interest to 
get some idea of the role that drag would play, so that it is introduced in a non- 
rational way, in the sense that it is not deduced in a systematic manner from the 
fundamental equations of motion applied to the bath liquid. It must be empha- 
sized that, if the drag is neglected, no irrationalities mar the analysis, other than 
those implicitly associated with formal mathematical manipulations. 

The analysis starts in $ 2  with a derivation of the equation governing the jet 
path, by formal expansions in powers of 6. Substantial algebra is avoided by 
considering the integrated form of the equations at  the appropriate point. Sec- 
tion 3 contains a description of a nearly vertical jet, for which the equation can 
be linearized. Emphasis is on the stability question. In  0 4 features of the nonlinear 
equation are described numerically and analytically, and finally, in $5, the 
results are summarized. 

2. Derivation of the jet equation 
The co-ordinate system that we shall use to describe the jet is shown in figure 2 .  

s is distance measured along the axis of the jet, whilst n is measured perpendicular 
to  this axis. u and v are the associated velocity components, and a is the inclina- 
tionof the jet to the horizontal. I n  terms of this curvilinear co-ordinate system, the 
equations for an incompressible viscous fluid may be written in the form? 

(h/&) + [a(h~)/an] = 0, (2.1a) 

t There are oountless sources for these equations; the author used Love (1944, p. 89) 
and Van Dyke (1969). 
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FIGURE 3. Equilibrium at jet boundary. 

( 2 . l b )  
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where h is related to the curvature K(s) of the jet axis by 

(n = 1 +nK(s) ,  K(s)  = a'(s)  

and the components of the stress tensor are related to the velocity components 
by means of the constitutive relations 

(2.2a) 

(2 .2b )  

(2.2c) 

The momentum equations, when written in terms of the velocity components, are 

These equations have to be solved subject to certain boundary conditions at  the 
edges of the jet n = k #, where t(s) is the jet thickness. The outer liquid is 
assumed, for the present, to be capable of imposing only a normal pressure a t  
the boundary, so that equilibrium of an infinitesimal triangle a t  n = i t  (figure 3) 
then implies that 
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pnn( 1 - *Kt) + it’p, -pvy 1 - 4Kt) - ipuvt’ = - (1 - 4Kt) P-, 
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at n = &, and similarly, equilibrium at n = - i t  leads to 

} (2.4b) 

at n = - i t .  Here, P* denote the pressure in the outer liquid at n = f i t .  
The remaining boundary conditions are the tangency conditions 

hv = 5 gt’u a t  n = f i t .  (2 .5)  

We now want to relate certain integrated quantities such as the axial force, 
bending moment, etc. To do this, equations (2.1) are integrated across the thick- 
ness of the jet, mean quantities at  the same time being defined by 

Thus the integrated continuity equation becomes, after use of (2.5), 

d(t;il)/ds = 0. (2.6) 

In  a similar way, the integrated momentum equations, with the aid of (2.4), 
are 

(2.7) 
a d 

as p (t2) +pKtG = pgt sin a + - (tEJ + K t K ,  + Qt’(P++ P-), 

representing an axial balance, and 

a -  d 
as ds p - (tuv) - p K t 2  = - pgt cos a + - (t G) - K t G  + (P- - P+) - K i t  (P+ f P-), 

(2.8) 
representing a normal balance. 

The origin of the various terms in these equations is quite transparent. In  
particular, the external pressure provides an axial thrust due to the varying jet 
thickness, and a sideways thrust partly generated by the jump in pressure acrow 
the jet and partly by the curvature. It should be noted that (2.6)-(2.8) are exact. 

An exact equation representing the equilibrium of moments can be obtained 
by multiplying the s-momentum equation by n and integrating across the jet, 
so that 

d I  Kt3 dM - tt’ 
as 2 ds 

p - - p t Z  =pg sina- + - - tpms + 4 ( P f  - P-), 

where M and I are ‘bending moments’, defined by 

at tt 
dnnpss, I = J-ttdnnu2. 

Another useful relationship is obtained by integrating (2.2 a ) ,  whence 

t z  = - t j j  - 2p(v+ - v-). (2.10) 

The integrated equations derived above are insufficient to solve the problem 
of course, since they contain too many unknowns. Consequently they must be 
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supplemented by closure conditions. For example, in the related problem of t,he 
elastica, the bending moment is classicaIly related to the curvature by assuming 
that plane sections remain plane. Here we shall derive closure conditions under 
the assumption that the jet is very thin, is in a state of near-neutral buoyancy, 
is nearly inertialess and is immersed in a bath of low viscosity fluid. 

It is clear that if the jet's density is equal t o  that of the bath liquid, and the 
latter is inviscid, then the equations admit a straight jet of constant thickness 
travelling at an arbitrary uniform velocity. Moreover, if the jet is very thin, it 
need not be straight. Indeed, to leading order, the equations admit an arbitrury 
path. Such a solution provides the leading term in an expansion in powers of the 
jet thickness. The path is subsequently determined by a solubility condition on 
higher order terms in the expansion. 

Define non-dimensional quantities with the aid of a characteristic length L, 
a characteristic speed U ,  a characteristic stress p( U/L) ,  and a characteristic 
density pe equal to that of the bath liquid. The governing equations are then 

aqas + (a(hq/an) = 0, (2.1 1 Q) 

(2.1 1 c )  
where Re = pCUL/p, G = pegL2/,uU, s = LS 

and quantities with a tilde are non-dimensional. 

jet is based on the assumptions 

p/pe = 1 +p*P, p* = 0(1), Re = PRe,+ .... 
As explained in the introduction, this is necessary if our model is to have any 
hope of duplicating the meanderings revealed by Taylor's photographs. 

The thickness of the jet is 0(6) ,  6 4 1 ,  and then the expansion for a slender 

All variables are expanded as a power series in 6, 

(2.12) 

where the variables on the right side are functions of S and the scaled normal 
variable N ,  related to fi by % = 6N. 

The above expansions are substituted into (2.11). The procedure for solving 
the resulting system of linear equations is to first find uj from the s-momentum 
equation, and then the other two equations determine vi+, and p j .  At each stage 
(particular value of j) the solutions contain undetermined functions of S.  Some of 
these are related by conditions a t  the jet boundaries, but complete determination 
of the solution to any particular order does not come until several of the higher 
order terms are considered. KO,  for example, which is of primary interest, is not 
determined by this procedure without consideration of u3, v4 and p3 .  The role 

I 
z = 6tl+S2t,+ ..., E = uo+6u1+ ..., 

v" = 6v1 + s2v2 + . . ., a = a. + &a, + . . . , 
I? = K,+SK,+ ..., @ =p,+6pl+ ..., etc. 



The buckling of thin viscous jets 455 

of the integrated equations (2.6)-(2.10) is to bypass a substantial amount of 
algebra by permitting the calculation of KO without explicit evaluation of u3, v4 
and p3.  

The leading solution is very simple: 

(2.13) 

where we have introduced Pc(#) = g(P+ + P-), the pressure in the outer liquid 
measured at the axis of the jet.t 

Note that, from hydrostatics, 

I uo = constant, KO = KO(#),  v1 = 0, 

po = P,(S) = &(P+ + P-)o, t ,  = constant, 

p - - p  c c  = p -p+  = 1 zpegt  cos a. (2.14) 

The important thing to notice about the leading solution (2.13) is that KO (and 
therefore ao) is not determined. Restrictions on the path only arise by considera- 
tion of higher order terms, so that the ultimate description will be nonlinear. 

The general soIution of the equations for ul, v2 and pl is 

u1 = U l l ( S )  N + UlO(S), 
v2 = - &&N2 - u;ON + v20(x), 

P1 = [ - G ( C 0 S  4 0  - ( 4 1  + U0KA)l 

( 2 . 1 5 ~ )  

(2.15b) 

( 2 . 1 5 ~ )  +PlO (8) 
and applying the boundary conditions leads to 

u1 = KouoN +ul0, where uoti +uiot, = 0, ( 2 . 1 6 ~ )  

v2 = - &uoKhN2 + Qt2,Khu0, (2.166) 

[ - G ( c o s ~ ) ~ - ~ u ~ K ~ ] N + ( P ~ ~ - ~ ~ ~ ~ ) .  ( 2 . 1 6 ~ )  

Nothing else is determined at this stage of the calculation, but turning to the 
next set of equations (those for u,,, v, andp,,) and boundary conditions leads, after 
some calculation, to the restraint 

U;oKo = 0. (2.17) 

KO will be assumed not to vanish, so that we find 

u2 = (Koul0 + Kluo) N + u20, where tluio + uotA = 0, (2.18 a )  

~3 +uO KO Kh N 3  - $( Kh ~ 1 0  + K; uO) N 2  
- (w& + &t!KOK&ZLo) N + @2,(KhU10 + K;u0) + &t2uoK& (2.18b) 

p2 = uoKoKhN2 + [ - G(c0s a)l- 2(uoK; + U ~ O K ~ ) ]  Nt-pzo, (2.18 c) 

where ~ 2 0  = Pc, + it2,~OKo KA - 2 4 0  
and ul0 is a constant. 

We could continue in this way, solving next for u3, v4 and p3,  but there axe 
two reasons why we do not want to do this. For one thing, the amount of algebra 
would be quite considerable and yet most of the information this would yield is 
not of interest. It is not u3, v4 andp3 that we want to find, but rather the condition 

t It should not be thought that expanding this as a power series in 6 implies that the 
motion of the jet disturbs the outer fluid. The pressure in the bath is always defined by 
the law of hydrostatistics. It is the path of the jet that depends on 8, and thus causes the 
dependence of P,. 



456 J .  Buckmaster 

on K O  that their solution implies.? In  addition we want to  introduce an O(a3) drag 
into the formulation without getting involved in the precise physical mechanisms 
which generate this drag. The simplest way to introduce such an effect is to add 
a drag term to the equation which represents the axial force balance, equation 
(2.7). This will be effective provided that we can switch to the integrated form 
of the equations at  this point. It turns out that, indeed, we now have enough 
information to close them to the required order. Such simplicity is not achieved 
without a price however. The external pressure must still be specified, and the 
only possible choice is the hydrostatic law. In  other words we model the bath 
liquid by a medium that imparts a hydrostatic pressure to the jet and a constant 
drag per unit length. These must surely be the fundamental ingredients of a real 
flow, but there would be additional (and very complicated) terms, so that the 
correlation can, at best, be qualitative. It must be emphasized, however, that 
such a compromise is not essential to our analysis. For no compromise is neces- 
sary if the drag is zero, corresponding to an inviscid (relative to the jet), inertia- 
less bath fluid. 

The equations governing the averaged quantities have already been written 
down [(Z.G)-(Z.lO)], and will be used as they stand with the exception of (2.7), 
which is replaced by (in non-dimensional form) 

p d -= p --? P a -N -_N 

P e  Pe P e  as - Re - (tu2) + - Re Ktuv = - Gf sin a + - (tp8J + Ktpns + t"'R - S3D,  (2.19) 

where b is a non-dimensional constant drag. D will have the same sign as uo. 

solutions (2.16) and (2.18). Thus the axial stress is given by 
These integrated equations have to be closed, and this is easily done using the 

jjS8 = - ~ ~ + G [ ( G ( ~ o ~ ~ ) ~ + ~ ~ o K ~ ) N - P , ]  +O(G2), 

from which follows 
B = &a3[G(cos a)o + 4uoKh] t: + . . . . (2.20) 

There are two contributions to the bending moment, just as there are in 
elastic-beam theory. The load, in this case the weight, makes a contribution and 
so does the curvature. However, since u1 does not vary with S if the curvature is 
constant, the moment is not proportional to the curvature, but instead depends 
on the derivative of the curvature. Clearly there is no real analogy with elastic- 
beam theory, and it is probably not helpful to think of the instability in terms of 
Euler buckling. 

The remaining closure conditions are 

(c+ - v"-) = 83UOt; + o(84) (2.21) 

and = ~ ' o + a P , , + 6 ~ ( p 2 0 + ~ t f u O K O K ~ )  + 0 ( 6 S ) .  (2.22) 

In  addition the mean axial stress turns out to be a useful quantity: 

4-z = &Dot, + 82(t,Pcl +p'ot,) 

f S3(t,ez f t2e1 + -k Q ~ U O K O K ~  f 42Lot;) + o(8'). (2.23) 

t We can be confident that there will be such a condition, since it is at this stage that p*, 
which is a measure of the density difference, first plays a role. 
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The integrated equations can now be solved. Thus the two force equilibrium 

0 = p*G(sin a)O t, + G[ (sin a), t, + (sin a) ,  t ,  + (sin a)2 t,] 

equations yield 

- Re,K,t, ut = - p*G( cos a),t, + tl[(G)2]r - l io[f~] ,  

Also, the moment equation, together with the result (2.20) for M3, implies 

(r)n8)2 = @!UOKON, (2.25) 

where we have recalled that K and a are related, namely K = a'. Eliminating 

(P,J2 and [t1pjQ3 from (2.24) and (2.25) then leads to the following equation for 
the inclination a,: 

-Ko[ t ,e2+t2e .  +t3pQ]. (2.24b) 

that 

N 

where 

2sinao+cosa,- 

R = 3 p * G / t : ~ , ,  D* = 3D/t;u0. 

(2.26) 

Apart from the drag, R is the single non-dimensional parameter of the problem, 
and in physical variables is proportional to (p  -pe)  L4g/,uUt2. If D* = 0,  Q can be 
eliminated from (2.26) by a simple scaling. Note that D* is non-negative. 

3. Analysis of a nearly vertical jet 

The basic features of nearly neutrally buoyant jets as revealed by Taylor's 
experiments is that they are unstable, in general, and do not remain vertical. 
In  this section we examine the stability characteristics of our model equation 
(2.26) by considering jets that deviate only a little from the vertical. 

Write 
a, = *7T+S8+ ... ( E  < i), 

and substitute into (2.26), retaining only leading terms for small 8. This yields 
an equation for 8, namely 

8 ~ -  e v i v  - see" + ( 2 ~  - D*) 0'2 = 0. (3 .1)  

This equation can be integrated once to yield a linear fourth-order equation 
containing an arbitrary constant of integration. To relate this constant to the 

flow variables, we may use the expression for [@J2 in (2.23), together with (2.24) 
and (2.25), to obtain an expression for t i ,  namely 

N 

Differentiating this expression, and using the governing equation for KO,  yields 

(IZJc)t; = i2~ina,,-D*-K;~, (3 .3 )  
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where, for a nearly vertical jet, the right-hand side can be replaced by Q - D*. 
Since t; is proportional to uio, we conclude that 

uio = - ~ ~ ~ ~ ~ ~ ( ~ - D * ) ~ + [ u Z O ( ~ ) - Z C Z O ( O ) ] + ~ U ~ ~ : ( ~ Z - D * )  (3.4) 

for a nearly vertical jet, with a similar expression for t;. Substituting back into 
(3.2) then gives 

and this is the first integral of (3.1). 
The analysis in this section consists of a discussion of the solution of (3.5), 

but consider first the velocity uzo. Since uio = 0 it is clear that uzo provides the 
first term of U, the mean jet velocity, that varies with 8. This variation is quad- 
ratic in S and implies that, for very large s, luzol will become very large. This is not 
surprising, since the smallest density difference can have an appreciable effect 
if the associated gravitational force acts on a fluid particle for a sufficiently large 
time. Naturally then, the present analysis is only valid on a bounded interval, 
and certainly breaks down when S = O( I/&). 

uz0, and therefore Ti ,  has a turning-point at 

It follows that, provided uo is positive, then U has a maximum at this turning- 
point if 0 > D*, and the jet thickness is then a minimum. Thus, when the weight 
is greater than the drag, there is a point where the stress explicitly generated by 
the velocity field changes from one of tension to one of compression. This is the 
same situation as occurs in a jet of syrup falling through air onto a horizontal 
surface, and with which Taylor (1969) has identified the onset of instability. If 
the drag is greater than the weight, however, (R < D*), U has a minimum at the 
turning-point and the stress changes from compressive to tensile. This would not 
normally be observed in more common situations where the jet is not close to 
neutral buoyancy. The results obtained in this section imply that this situation is 
also unstable. t 

Equation (3.5) is best discussed in two parts, one for positive values of 0, 
the other for negative values. Consider first of all positive values of R and intro- 
duce new variables m and 9, defined by 

so that (3.5) becomes 
p ( m )  + wm+'(m) + #(m) = 0, (3-7) 

o E 1-D*/0.  

t The dichotomy described in this paragraph can be duplicated even if the drag is zero, 
since the sign of can be changed by changing the sign of p*. 
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m = 0 is a natural origin for this equation, but it does not coincide with the 
turning-point (3.6). Specifically, X,, the value of S when m = 0, is related to S,  by 

So = 8,- (3Re2zco/t3s2-D*)). 

It is of interest to discuss the general solution of (3.7) for values of w 6 1. 
However, some preliminary clues to the nature of the solutions that can be ex- 
pected can be obtained by seeking asymptotic solutions, valid for large Iml, 
directly from (3.7). Thus if we seek an asymptotic solution of the form 

$ - ImI f f i exPw4~)  

we find that, for positive values of w ,  three possibilities are 

The fourth solution is algebraic: 
$ N Im/-lk 

Solutions of (3.7) can be found in the form 

(3.86) 

(3.8c) 

where C is any contour for which tlIw exp ( - mt + t4/4w) vanishes a t  each end. If 
w > 0, suitable contours are straight lines originating at the origin and going 
to infinity at angles in, in, in and i n  relative to the positive real axis. Each of 
these four contours leads to an independent solution, so that the general solution 
is a linear combination of the four solutions: 

COB 4 = JOm dr exp mr - - rllW-1 (mr) (w  > 0).  { ‘6) sin 
(3.10) 

It is clear that two of these solutions diverge exponentially as rn + co and two 
of them decay algebraically. A unique linear combination of the two asymp- 
totically algebraic solutions, namely 

(E- sin mr] , 

decays exponentially [cf. (3.8a)l. 
The most significant feature of these results is that the general solution for 4 

contains terms that diverge exponentially for large negative values of m, and 
terms that diverge exponentially for large positive values of m. The physical 
manifestation of this is, presumably, a significant deviation of the jet from the 
vertical, in agreement with the experimental observations of Taylor. This in- 
stability is in no way associated with traversal of the origin (m = 0) ,  and there- 
fore has nothing to do with S,. It can be initiated whether or not the velocity gradient 
is negative. 
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The contours used above will not do if w < 0. One suitable contour traverses 
the entire length of the imaginary axis with the exception of a small detour 
around the singularity at  the origin. This gives one solution from which a second 
independent solution can be obtained, if IIw is not an integer, by replacing m 
by - m. t  The two solutions obtained in this way are 

( 3 . 1 1 ~ )  

where only the Jinite part of the integral is retained. Two other solutions can be 
obtained in a similar way by considering contour along the real axis. This yields 

(3.11 6 )  

where, again, only the finite part is retained. 

exponentidly. However, the two linear combinations 
Three of these solutions behave algebraically as m+co and one diverges 

(3.1 1 c) 

both decay exponentially as m -+ 00. These results are consistent with (3.8b). 
The solutions for w < 0 predict instability despite the fact that the speed of the 

jet then displays a minimum. Moreover, if w = 0, so that uzo varies linearly with 
S, equation (3.5) for 8 still has unstable solutions. Thus for the present problem 
it appears that instability cannot be associated with a particular sign for the 
velocity gradient, contrary to the speculations of Taylor. 

The solution of (3.5) for negative values of !2 is described in terms of the vari- 
ables 

so that 

where 0) is positive. Solutions are 

(3.12) 

( 3 . 1 3 ~ )  

(3.13b) 

and one of these diverges exponentially, implying instability. 

t The case when l/w is a negative integer is distinguished by the fact that there is a 
polynomial solution. We do not discuss it since it is not of special interest, and the impli- 
cations for the stability question do not differ in essence from those deduced for arbitrary 
negative w .  
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FIGURE 4. Nonlinear jet. 

4. Nonlinear analysis 

the subscript dropped) 
In  $2, the equation governing the path of the jet was derived, namely (with 

a’av - aivu” + ai3a”‘ - D*a‘2 + Q[2d2  sin 01 +a” cos a] = 0. (4.1) 

Numerical integration of this equation as an initial-value problem complements 
the conclusions of 3 3 that nearly vertical jets are unstable, in that it describes 
the deviation beyond the point where the linearized analysis breaks down. It 
does not replace the linear analysis since the disturbances introduced are, of 
necessity, finite. A typical result of such a computation is shown in figure 4 
(a = 1, D* = 0). x and y are Cartesian co-ordinates with the gravity force in the 
negative-y direction; note the scale change. Substantial deviations from the 
vertical, including reversal, were observed by Taylor. 

All the numerical computations reveal a common asymptotic behaviour in 
which the jet eventually turns along an ever-tightening spiral path. It cannot 
be concluded that this is the only possible asymptotic behaviour, but it is of 
interest to see whether it can be described analytically. 
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Numerical integration suggests that, as S 3 co, there is a balance 

aV+a’201‘” N 0. 

This in turn suggests that a’ has the asymptotic form 

(4.2) 

a’ N A S + B +  ..., (1.3) 

for then (4.2) is an equation for a’”, with parabolic cylinder functions as solutions, 
so that 

+...; 

and integration leads to 

D l  i } --- A 2 S t e x p ( - ~  

(4.4) 

consistent with (4.3). It is easily verified that the terms omitted from (4.2) 
are smaller than those retained. Note also that (4.4) implies that the expansion 
for a! contains five arbitrary constants, so that it constitutes a general solution. 

The path of the jet in this asymptotic limit is 

sin ($AS2 + BX + E )  
AS 

cos(*AS2+BS+E) 
AS +.-., +..., y - yo+ x - XO+ 

where 01 N +AS2 + BS + E and xo and yo are constants. This is a spiral whose 
radius N 11s) consistent with the numerical results. 

A spiral of this kind is not seen experimentally. Although there is a strong 
tendency, given the right conditions, for a gently oscillating jet suddenly to  wrap 
around in a tight loop, it does not repeat the circuit but instead turns, quite 
sharply, out of the plane of the loop (see especially figure 9 in Taylor’s paper). 
It is possible, then, that the spiral is a creature of the two-dimensional analysis. 
The failure of the path to display any long range drift under the influence of 
gravity is presumably a result of the non-uniformity mentioned in the paragraph 
preceding equation (3.6). 

5. Concluding remarks 
The work described in this paper was motivated by experiments of Taylor 

(1969), in which thin, slowly moving jets of glycerine (viscid) were observed as 
they travelled vertically downwards through brine solutions (relatively inviscid) 
of density only slightly less than that of the glycerine. These experiments reveal 
that such jets can be unstable and deviate significantly from the vertical. Taylor 
has suggested that the instability is analogous to Euler buckling. 

The present work has attempted to model these results by consideration of 
thin two-dimensional jets for which the density difference is O[(thickne~s)~]. 
The analysis of 92 shows that such jets are undoubtedly unstable. However, the 
instability seems to have little to do with the sign of the velocity gradient. Thus 
a jet which is in a state of tension will rapidly deviate from the vertical without 
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waiting for the stress to become compressive. Furthermore the equations govern- 
ing the shape of the jet have little in common with the equation of an elastica. 
Consequently there appears to be no evidence that this phenomenon is related 
to Euler buckling.? 

The present results do not provide a stability criterion in the sense of a critical 
value of some parameter necessary for instability to occur. However the argument 
based on figure 1 implies that if pipe- 1 is 0(6) ,  say, then O( 1) deviations from 
the vertical cannot occur. Analysisof this case confirms such a point of view in that 
the deviation from the vertical is O(6).  The connexion with the present analysis is 
that as !2 -+ 00 the domain of validity shrinks to zero (this is clear from (3.4)). 
Thus a greater understanding of the stability question is likely to arise from an 
examination of the non-uniformity that arises at large values of S. An analysis 
of this kind would involve the use of multiple scales. 

Numerical integration of the nonlinear jet equation has described the nature 
of the instability. Typically, after a few relatively mild oscillations, an initially 
straight jet quickly tightens into a loop. This closely parallels figure 9 of Taylor’s 
paper. However, the theoretical jet continues to circle, following a spiral path, 
whereas real jets turn out of the plane of the loop. This suggests that it would be 
of interest to examine the three-dimensional problem. 
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t It is worth noting that Taylor describes another experiment in his 1969 paper in which 
threads of a very viscous liquid, floating on mercury, are buckled. Explicit comparison is 
made in figure 12 of that work with the third mode of buckling of an elastica. In an analysis 
related to the present one, A. Nachman and the author have derived equations which 
describe the motion of a thin viscous thread. Although shapes that are roughly elastica- 
like can be generated, the equations and their solutions have little in common with those of 
an elastica. 
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